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ON THE FORCE ACTING ON A BODY IN VISCOUS FLUID* 

V.L. BERDICHEVSKII 

Extension of the Kelvin -TTait formula to the case 
fluid is presented, and the problem of the analog 
tions for media with memory is discussed. 

The problem of determination of 
motion in an unbounded or bounded by 
fluid was reduced by Kelvin and Tait 
of fluid when that energy is finite. 
kinetic energy K by formulas 

forces and moments acting on an absolutely rigid body in 
fixed walls potential stream of perfect incompressible 
/l-33/ to the problem of determining the kinetic energy 
The force and moment are determined in terms of the 

of a body moving in a viscous 
of the Onsager reciprocity rela- 

F,=%_d d: 
1 ar” dl ar” K = K (ri, r: fr aa', ah,J 

)! 

where ri are components of radius vector r of a fixed point of the body, a,* are componentsof 
the orthogonal matrix awhich defines the position of unit vectors (i,j, k,a, b,c = 1,2,3) ac- 
companying the body, the comma preceding t in subscripts indicates differentiation with re- 
spect to t, and eijk are Levi-Civita symbols. 

Similar formulas for a body in the Stokes flow of viscous fluid are linked with the dis- 
sipation potential of the fluid D by the expressions 

Fi = _ 
Cm cr. a; r, t, a, J 

ar;, (2) 

&fi=- 
aD CT, a; T,fU,J k 

ad. * 
a,, te i jk 

In the case of Newtonian fluids Drepresents half of dissipation in the region of motion. 
The question arises whether a universal relationship which would bind together the force, 

moment, kinetic energy and dissipation exist, when the dependence on not only instantaneous 
properties of motion but, also, on the motion previous history is available. 

It is shown below that the variational equation 

F,Br' f A~$$ = FK - -& 6.K - i3.D (3) 

which holds at every instant of time t is an appropriate generalization of formulas (1) and (2) 
for a motion that begins from the state of rest. In this equation 6$ = '/ eGka."ija 2 1 ka is the 

variation of the body angle of turn, and the kinetic energy and dissipation potentialaresome 
functionals of the history of motion. Their dependence on previous history can be defined by 
two groups of arguments (separated below by the semicolon) 

K = K (r CT), a (7); r,r, a,4 
r=o 
T=t 

D = D (r(~), a(~); r.T, a,,) 
r=o 
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The method of separating the two groups of arguments is given below. 
In (3) 6 is the operator of variation with respect to both arguments, and 6. is the 

operator whose action consists of varying with respect to the second group of arguments, with 
subsequent substitution of Sr, 6a for 6r,%, Fa,r. 

The following observations should be noted. 
lo . Relations (1) and (2) follow from the variational equation (3), when Rand D are 

functions of the instantaneous position and velocity of the body. 
2O. The variational equation (3) shows that the six functionals of the historyofmotion 

J'< and Mi are expressed in terms of the two functionals K and D. Since Eq. (2) is a part- 
icular case of Eq.(3) and represents the Onsager principle for a slow motion of the body 
in a viscous fluid, Eq.f3) may be considered as the analog of Onsager's principle for inter- 
actions that are not localized with respect to time. In thermodynamic systems with neglibi- 
ble inertial effects the respective generalization of the Onsager principle may be formulat- 
ed as follows: 

where X.J is the thermodynamic flux, &fdt are thermodynamic forces, and tl and Dare func- 
tionals of internal energy and dissipation, respectively. 

30 . Setting in (3) for the instant of time t,6r'-6cp"= 0, we find that the functionals 
K and D must satisfy the condition: for any Q(~)and 6$(r) that vanish at r= 0 and r=t 
the identity 

d 
6R - x6,"- b,D= 0 (4) 

must be satisfied. 
4O. The calculation of forces and moments acting on a solid body in a viscous fluid is 

extremely complicated. It is, hence, reasonable to use the variational equation (3) for semi- 
empirical determination of forces and moments, selecting functionals K and Dso that they sat- 
isfy formula (4) and, then obtaining experimentally the free parameters. 

Let us prove equality (3). For this we shall consider in some inertial system of co- 
ordinates xi a vessel containing a homogeneous incompressible viscous fluid with body A in 
it. At the instant of time t= 0 the system is at rest 

zi (r", 0) = 2~0’ (E”), 7~’ (Y, 0) = 0, r.t (0) = 0, a,t (0) = 0 (5) 

where E" are Lagrangian coordinates of the fluid and solid body, $(p,t)is the law of motion 
of the medium, and V’ (E”, t) = %?? (E*, t)/at is the medium velocity. 

Under the action of external forces the body begins to move in conformity with some law 
r(t), a (t). We further assume that at t = 0: 

r,tt (0) = 0, a,tt (0) = 0 (61 

Motion of the fluid is determined by the equations of momenta and the continuityequation 

(7) 

and by the boundary conditions at the boundary 3A E of the body and aV of the vessel 

d (p, t) = ri (t) + a: (t)Y, 5” cz 0Ag (8) 
;c* (E”, t) = rt* (5”), E” E av 

In Lagrangian variables the body boundary aAk is fixed relative to its particles, and 
r = 0 are Lagrangian coordinates of a point of the body at radius vector xi= r’(t). It is 
assumed that in the considered here time interval the system of Eqs.(5)- (8) has a solution 
and that the solution is unique. 

The law of fluid particle motion d(r,t) and the pressure p(ga,t) can be considered at 
the instant of time t as functionals of the law of solid body motion r(t), aft). Letusassume 
that an infinitely small perturbation 6r(t), &a(t) of motion of the body takes place. Then 
x"(E"; t)and p(p,t) obtain some infinitely small increments 6x" and 6~. The symbol 6 denotes 
variations with constant 5 and symbol 8 those with constant xi . Equations for the 
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determination of 6xi and 6p obtained by varying Eqs.(7) are 

- pC,u'AGxk- 2yV&"V'V vi I k , cisx+=o 

Advantage is taken here of the property that variations 6 with constant c'are commuta- 
tive with operator didt, and variations i) at constant xi are commutative with operator Vi,and 
of the relation 6u = au + &ckv,u. 

By varying (5) and (8) we obtain for 6xi the initial and boundary conditions 

62 = 0, d6zi 
dt== 0 when t=O 

Sxi = 6~" + ajll (xj - r')&,' on OAF, 
6xi = 0 on ?lV 

(10) 

In conformity with (9) and (10) the quantities Sx' are at instant of time t functionals 
of the previous history of motion r(t), a(t) and of variations 6r, 6a. We express this as fol- 
lows: 

6xi= 
T=.t 
1' (r(T),a(t); h(t), b(7)) 

T=O 
(11) 

Although functionals (11) depend also on 5, the latter is not shown among the arguments 

for brevity. As implied by system (91, (10) functionals (11) are linear with respect to fir, 

fir and, generally, nonlinear with respect to r,a. 

Derivation of the variational equation (3) is based on the equality 

(12) 

We begin the proof of relation (12) by stating that by virtue of assumption (6) 

da;idt = 0 when t = 0 (13) 

Indeed, by applying operation rot to th e equations of momenta and taking into account 

that vi=0 at t= 0, we obtain 
rot (aviat) .- 0 at t=O 

Moreover d:r (ali/&) = 0 at t = 0. On cY~ and aAkwe have dvldt = 0 at t = 0. This is only 

possible when at t=O throughout the flow region au/at = dddt = 0 . 

We replace in (9) the symbol 6 by the time derivative d/dt with constant Ea. Equations 

(9) are now transformed into Eqs.(7) differentiated with respect to time. We shall consider 

these equations as linear with respect to vi and dpldt as variable coefficients whichweassume 

to be known functionals of 7. CT), r* CT). 
At the initial instant of time vi satisfy by virtue of (5) and (13) the conditions 

vi = du” ldt = 0 at t = 0 

At the stream boundary, differentiating (8) with respect to time, we furthermore have 

I? = 0 on aV; 2 = ri,i + aja (2 - FJ (t)) CC,~,~ on a+ 

Thus the system of equations for the determination of vi and dpldt fully coincides with 

that for the determination of 6s' and 6p and conforms to formula (12). 

The kinetic energy of fluid and the dissipation potential are defined by formulas 

K= \ +&lL., D = j ~LV~~‘T’~,U~, dv (14) 
i- v 

where the parentheses in subscripts denote symmetrization. 
The substitution of (12) into (14) determines the dependence of K and D on the two 

groups of arguments, and K and D are quadratic with respect to the second of these groups. 

We multiply the equation of momenta by Sxi and integrate over the region occupied by the 

fluid. Using the boundary conditions for Sxi on aV and aA:, and the definitions of force 

and momentum, we obtain 

Fib’+ ,Il,&q’$- \ 2+VovjJVCjSxi,dli + 1 p-$-6x, dli = 0 
i, " 

(15) 

where fix' indicates the variation of x'(j,, t)generated by the variation of r(T) and a(r). Using 
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the equality 6~' = ddx’ldt and formula (12) we rewrite (15) as 

Fib’ + M,&p’ + 1 ~!L\-(WV~~~~~~ (r (T), a (T); 6r (T), 6a (.t)) dv + 
T=” 

-& \ pvi?l(r(r), CC(T): &r(T),Ea(~))dv- s pviSvidv=O 
t \ 

According to (14) and (12) 

6K = ;c pviSuidV 

6-K = i pvirFL (r(T), a(T); 6r, 6a) dV 
Y r=o 

6-D = ZpVWVi’~! (r(T), a (7); 6t, 8a) dV 
& 

(16) 

(17) 

From (16) and (17) follows (3). 
For a deformable solid body defined by a finite number of degrees of freedom the varia- 

tional equation (3) to which is added the work of generalized forces on the additional degrees 
of freedom, is also valid. Extension to Newtonian viscous compressible fluid does not present 
difficulties. 

It is clear that the conclusion arrived at above and based on equality (12) are directly 
applicable to any system that is locally defined by equations of type (71, and after "averag- 
ing" (passing to a system with lesser number of degrees of freedom) local relations arereplac- 
ed by variational realation (3). 

It should be noted that the assumption of the motion starting from rest is essential. 
Otherwise (e.g., in the case of steady motion) additional terms appear in formula (12), and 
these will have to be taken into account in the variational equation (3). 
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